Simulation and Analysis of an Earth Observation Mission Based on Agile Platform

Augusto Caramagno
Fabrizio Pirondini
Dr. Luis F. Peñín
Advanced Projects Division
DEIMOS Space S.L.
Engineering activities and assets: EO Missions

- SPECTRA Phase A (Mission Analysis and E2E Simulator)
- EarthCARE Phase A
- GMES Sentinel Architecture Studies
- GMES Sentinel-3 Definition Phase
- Study on the use of EP for RS SC
Agile Platform Simulator Overview

- MATLAB-based mission simulator, composed of a set of Matlab/Simulink models, supported by a MMI.
 - Quantitative assessment of the performance of different mission implementation options.
 - Mission planning scheme
 - Attitude profile constraints
 - Available GS
 - Tool conceived for the simulation and optimisation of the complete mission chain, covering the three segments
 - Space
 - Ground
 - User segment (observation sites)

- Main functions:
 - Analysis of Mission Design and Scenario.
 - Test bench for Design and Optimisation of Mission Operations.
 - Mission Design Consolidation and Performance Assessment.

- Application on SPECTRA mission scenario
Agile Platform Simulator Overview

- **Mission scenario**
 - Space Segment
 - User Segment
 - Ground Segment
- **Functionalities**
 - Mission Analysis
 - Timeline Optimisation & Execution
 - Mission Operations and Budgets
- **Image acquisition Modelling**
 - Observation geometry optimisation
 - Agility and Payload Constraints
- **Inputs**
 - Scenario Definition
 - AOCS Accuracy
 - AOCS Restitution Accuracy
- **Output:**
 - Effective kinematics
 - Estimated position and pointing
SPECTRA Phase-A: Mission Analysis and Operations

- SPECTRA operation concept is based on sequences of 7 multi-directional observations of specific sites, in order to acquire information for BRDF modelling as a function of:
 - Observation-zenith angle (OZA)
 - Solar incidence angle (SZA)
- Mission planning has to determine the best series of acquisition sequences
 - Management of site acquisition conflicts
 - Management of the satellite resources
 - Scientific requests & availability of the field segment
- Constraints at system-level have to be taken into account
 - Availability of space, ground and user segments
- In the instrument imaging mode, the ADCS follows a pre-defined attitude profile, aiming instrument line of sight at the target site.
- Mission Planning prototype is based on a ground preparation of a reference operation plan, converted into attitude profiles uplinked to the satellite.
Agile Platform Simulator: Functionalities

- **Mission modelling**
 - Mission scenario analyses
 - Number of image acquisitions
 - Conflict analysis
 - Ground station coverage
 - Perturbation Analysis

- **Timeline optimisation**
 - Image acquisitions sequence
 - Ground station contacts
 - OZA sequence

- **Timeline execution**
 - Orbit and attitude profiles
 - Various AOCS modes
 - LOS Kinematics
• It is possible to simulate Agile Platform missions on various time scales ranging from a few seconds to mission lifetime.
• This allows to evaluate the feasibility of the baseline mission and its expected performances.
• Three main simulation timescales are foreseen:
 - **Long term** simulation (from one repeat cycle to a few years) → *Mission Performance Evaluation*
 - **Medium-short term** simulation (one repeat cycle or less) → *System Budgets*
 - **Image sequence** simulation (one image sequence) → *Generate LOS Kinematics as input to Image Quality Simulator*
The timeline optimisation over a whole year is intended to:
- Evaluate the proposed calendar of user requests, in terms of feasibility and completeness
- Determine the fulfilment of the calendar and the available overhead observation margin
Medium-term simulation: Timeline optimisation

- Spanning a repeat cycle (14 days), allows the mission analyst to study aspects like:
 - Orbit propagation results (orbit and attitude profiles for system-level analyses)
 - Distribution of conflicts between the sites
 - Selection of the passes in the timeline optimisation
 - Total number of image acquisitions per orbit and selected events
 - Ground station contacts optimisation with different criteria
 - Distribution of the ACT at PCA for each site
 - Optimisation of the intermediate observation OZAs for each site
 - Spread of the Phase Angle sampling for each site
 - Compatibility between the agility constraints and the selection of the intermediate OZAs.
Medium-term simulation: Timeline execution

- **Output:**
 - Orbit and attitude profiles
 - Commanded
 - Estimated
 - Effective
 - Simplified target-pointing during image acquisition
 - Cold-space calibration, transitions

- **Data to system-level analyses:**
 - System budgets
 - Power budgets
 - Thermal analyses
 - Platform agility analyses
Short-term: Instrument LOS kinematics generation

- Orbit and attitude profiles are computed for a complete image acquisition sequence (7 scenes):
 - Commanded
 - Estimated
 - Effective

- The S/C follows 3 pointing laws during the simulation:
 - Scene acquisition
 - Repositioning
 - Tranquillisation

- LOS Kinematics profiles are provided as input to an Image Quality Simulator
Short-term: Attitude guidance and control

- Agile Platform Simulator implementation of attitude guidance:
 - Nadir pointing, Sun pointing, Target Pointing and Imaging mode, Orbit control mode (dummy).
- Modes are defined by kinematics constraints:
 - Yaw steering
 - Scene scanning principle
 - Illumination constraints
- Imaging mode is configurable selecting:
 - Site location: geodetic latitude, longitude and altitude above geoid
 - Image size
 - Scanning direction with respect to SC ground track
 - Geometric/Radiometric shift cancellation
 - Pixel line integration time (slowdown factor)
- Attitude estimation: performance model (star tracker)
- Attitude control
AOCS Algorithms and Modelling

- **Mission Timeline simulation encompasses:**
 - Execution of reference mission planning
 - Modelling of attitude determination error
 - Implementation of AOCS modes and mode transition (state machine)
 - O/B Attitude guidance (nominal LOS kinematics based on orbital position or timetagged profiles) and control
Nominal and Effective Kinematics

- **Nominal kinematics**
 - Agile platform
 - Switch between pointing modes
 - Advanced control laws

- **Effective kinematics**
 - Scene acquisition
 - Repositioning
 - Tranquillisation
CMG-based Attitude Control

- Algorithm:
 - Star-tracker based AD
 - CMG based Attitude Control
 - Quaternion formulation
 - Rest-to-rest eigenaxis rotation under slew rate constraint
 - Compatible with CMG sizing) and control requirements.

- Image acquisition by a 3 manoeuvres sequence:
 - Acceleration phase
 - Coasting phase
 - Deceleration phase
CMG-based Attitude Control

- Example of Effective Profile during an Image Acquisition

Angular Velocity Components

Site = 46 - Event start time [s] = 917415 - ACT angle at PCA [deg] = 0.767

- Effective \(\alpha_x \)
- Effective \(\alpha_y \)
- Effective \(\alpha_z \)
CMG-based Attitude Control

- Attitude Control error during an Image Acquisition

![Control Error: Angular Velocity Components](image-url)

- Slu = 45 - Event start time [s] = 917415 - ACT angle at PCA [deg] = 0.767
User Interface
User Interface : Output Visualization

Output Data Visualization

Orbital Elements

Pass Geometry

Fulfilment of Agility Constraints