Dutch Space

Generic AOCS Simulator

2nd ESA Workshop on Astrodynamics Tools and Techniques

ESTEC, September 13-15, 2004

Erwin Mooij
AOCS hardware and software development relies on different simulation environments:
- Engineering Simulator
- Hard real-time HILT/SILT

No commonality in the development and/or use of these simulation environments:
- Internal: differences from project to project
- External: prime/sub interfaces

Solution: Generic AOCS simulation environment, to be used in European Space Community
- Well documented
- Validated models
- Generic interfaces, etc.
Objectives:
- Sub-system Model Development and Testing
- Control Algorithm Design and Testing
- Engineering Simulations

Tools:
- User-friendly GUI for definition and plotting
- Generic Dynamics Core and Environmental Models
- Library of Sensor and Actuator Models
- User defined sub-systems can easily be added

Objectives:
- Real Time Simulations
- Link to 2D/3D IGS Graphics
- Add other “coded” models

Tools:
- Use of EuroSim GUI and plotting facilities
- Same Generic Dynamics Core and Environmental Models
- Same Library of Sensor and Actuator Models

Objectives:
- ASW validation
- SCOE backbone

Tools:
- MIL1553-bus communication
- Software in loop Simulations
- Hardware in loop Simulations

Introduction (2)
Overview

- **GAOCS Simulator elements**
 - MATLAB/Simulink Environment:
 - Design philosophy
 - Physical modelling
 - Simulator architecture
 - Functional verification
 - EuroSim Environment
 - Interface mechanism with MATLAB/Simulink
 - Real-Time Workshop

- **Examples**
 - Adaptive satellite control
 - Herschel on-board software development
 - ConeXpress rendezvous and docking

- **Current status and future work**
MATLAB/Simulink Environment

Design philosophy (1)

- Graphical User Interface to “learn” simulator and for quick access to simulation results
- Libraries with Simulink models and corresponding initialisation files
- Set-up of simulator with library links
- Instantiation of library models, automated initialisation of each instantiation
- CMEX functions
 - local workspace defined for definition of global variables
 - Instantiation of simulator core to allow for formation-flying simulator, rendezvous-and-docking simulator, ...
MATLAB/Simulink Environment

Design philosophy (2)

Facility to plot simulation results

Edit Window: Body Characteristics
MATLAB/Simulink Environment

Physical modelling

- Equations of (translational and rotational) motion for a rigid satellite with up to 4 solar panels, with Earth as central body
- Sun and Moon as perturbing third bodies
- Tabulated atmosphere according to MSIS-86
- Gravitational field according to inverse-square law (+J_2, J_3 and J_4) or GRIM-5C1 (spherical harmonics, $n=m=99$)
- Geomagnetic field based on IGRF-95 (spherical harmonics, $n=m=10$)
- Solar radiation according to inverse-square law
MATLAB/Simulink Environment

Simulator architecture (1)

User-defined sub-systems

Generic core

Main Simulink AOCS simulator window
MATLAB/Simulink Environment

Simulator architecture (2)

Simulink AOCS logic sub-system
MATLAB/Simulink Environment

Simulator architecture (3)

Main Library Simulink window

Sensor Library

Actuator Library
MATLAB/Simulink Environment

Simulator architecture (4)

- Performance improvement by replacing MATLAB scripts by C-coded S-functions (so-called CMEX S-functions)

- Simulator porting to EuroSim: relatively easy due to use of CMEX functions

- Use Real-Time Workshop to autogenerate C-code of Simulink simulator structure (per sub-system)

- Porting process and integration has been automated to a large extent

- Alternative in latest version: integrate Simulink models directly in EuroSim model
MATLAB/Simulink Environment

Functional verification (1)

- Time propagation, both in relative and absolute sense, and frame and co-ordinate transformations

- Environment, consisting of the Earth's gravitational and magnetic field, the Earth's atmosphere, the motion of Moon and Sun and the interplanetary environment

- Equations of motion, focusing on both translational and rotational motion, and the numerical aspects due to the integration of the differential equations

- Perturbations, of gravitational origin, due to third-bodies (Sun and Moon), the Earth-magnetic field, the Solar radiation and the working of the upper atmosphere
MATLAB/Simulink Environment
Functional verification (2)

Dutch Space

Molniya-type orbit

goostationary transfer orbit
EuroSim Environment (1)

Application-dependent sub-system models:
- generic actuator
- AOCS logic
- generic sensor

Datapool: Input/output exchange

Flight dynamics models:
including CMEX functions

Support Library

Model Editor

Simulation Controller
EuroSim Environment (2)

Dutch Space

EuroSim – SILT Architecture
MRAC application (1)

- Design of MRAC for a satellite in a perturbing environment (LEO, solar-radiation pressure and aerodynamic drag)

- Tuning of controller parameters in ideal environment, with ideal sensors and actuators (MATLAB/Simulink)
 - corrective control roll channel
 - slew maneuver pitch channel
 - scanning pattern yaw channel

- Transfer of models to EuroSim:
 - inclusion of imperfect sensors and actuators, and perturbed environment
 - step response on roll angle, stability check

- Inclusion of MIL-1553 communication, bus frequency check
MRAC application (2)

Dutch Space

user specifications

reference input

adaptive gain

adaptive gain

reference state

output error

adaptive gain

adaptive gain

reference state
MRAC application (3)

- MRAC system
 - ADCS.Logic
 - Actuators
 - commanded actuator state
 - control forces and moments body frame
 - flight_dynamics
 - actual state
 - flight_dynamics
 - control forces and moments inertial frame
 - generic core
 - actual-state dependent parameters

- Actuator model (error generator)

- Sensor model (error generator)
MRAC application (4)

Top level Model Reference Adaptive Control System

includes C-code
MRAC application (5)

solar panel mass: 40 kg

satellite body mass: 1600 kg

LEO (300x300 km), satellite in full view of Sun

step-function roll response
MRAC application (6)

Dutch Space

ramp-function
pitch response

square-wave
yaw response
MRAC application (7)

Dutch Space

100 Hz

MIL-bus frequency 50 & 20 Hz

EuroSim PSF

EuroSim SILT
GAOCS Herschel Implementation (1)

- MATLAB / Simulink Environment
- Generic Core (Flight Dynamics and Environmental Models)
- (External) Sensor Models (3 versions):
 - 2 Star tracker models
 - 4 Gyros
 - 2 Quartz rate sensors
 - Attitude Anomaly Detector
 - 2 Sun Acquisition sensors
- (External) Actuator Models (3 versions):
 - RCS
 - 4 Reaction wheels
- Controller Models:
 - RCS controller (in-house)
 - RWS controller (external)
The Herschel PSF:

- EuroSim Environment under Linux
- Functional (PDR) unit models
- Models ported from MATLAB/Simulink using Real Time Workshop
- Defining the EuroSim schedule similar to Simulink execution order
- Verification against MATLAB/Simulink results:
 - EuroSim based PSF_V0 Simulator with qualitatively similar results
- CDR unit models integrated, verification against PDR results
- Hardware interfaces integrated
- Integration of on-board software
ConeXpress R&D simulator (1)

ConeXPress in mated configuration with target satellite
ConeXpress R&D simulator (2)

Waiting ellipse (relative position chaser-target)
Current status

- Generic simulator for rigid satellites in Earth environment has been designed and implemented in MATLAB/Simulink
- Each of the individual models as well as the combination of several models has been evaluated and judged to be correctly implemented
- Performance improvement by factor of 20, by using C-coded S-functions
- Basis for further development of Generic EuroSim AOCS simulation environment for SIL and HIL testing
- (Potential) customers: HERSCHEL, ConeXpres, EarthCare, EXPERT re-entry vehicle, Virtual Satellite, your satellite, ...
Current and future work (1)

- **Modelling:**
 - Additional satellite shapes, i.e., cone and sphere, which includes the adjustment of the solar-radiation pressure and atmospheric perturbation models
 - Flexible appendages (NASTRAN data files with mode shapes, etc.)
 - Addition of tip masses to the appendages
 - Mass variation due to fuel consumption, including sloshing models
 - Sun as central body for interplanetary missions
 - Etc.

- **EuroSim:**
 - Development of GUI, possibly combined with MATLAB/Simulink

- **SILT/HILT:**
 - GAOCS simulator with MIL-1553 communication ➔ Herschel
 - Dedicated (flight) hardware in loop ➔ Herschel
Current and future work (2)

- Goal: one AOCS simulation and test environment for European Space Programmes (ESA), possible funding GSTP/TRP/?

- Open source of GAOCS Simulator elements

- Central management of GAOCS Simulation Environment:
 - Feedback of user models from industry
 - Screening for potential implementation
 - Validation of user models and implementation in baseline
 - Release of next version of GAOCS Simulation Environment
 - Documentation

- Set-up of data interfaces with COTS products (STK, simsat, …)